126 research outputs found

    The Human Cathelicidin LL-37 Preferentially Promotes Apoptosis of Infected Airway Epithelium

    Get PDF
    Cationic host defense peptides are key, evolutionarily conserved components of the innate immune system. The human cathelicidin LL-37 is an important cationic host defense peptide up-regulated in infection and inflammation, specifically in the human lung, and was shown to enhance the pulmonary clearance of the opportunistic pathogen Pseudomonas aeruginosa in vivo by as yet undefined mechanisms. In addition to its direct microbicidal potential, LL-37 can modulate inflammation and immune mechanisms in host defense against infection, including the capacity to modulate cell death pathways. We demonstrate that at physiologically relevant concentrations of LL-37, this peptide preferentially promoted the apoptosis of infected airway epithelium, via enhanced LL-37-induced mitochondrial membrane depolarization and release of cytochrome c, with activation of caspase-9 and caspase-3 and induction of apoptosis, which only occurred in the presence of both peptide and bacteria, but not with either stimulus alone. This synergistic induction of apoptosis in infected cells was caspase-dependent, contrasting with the caspase-independent cell death induced by supraphysiologic levels of peptide alone. We demonstrate that the synergistic induction of apoptosis by LL-37 and Pseudomonas aeruginosa required specific bacteria-epithelial cell interactions with whole, live bacteria, and bacterial invasion of the epithelial cell. We propose that the LL-37-mediated apoptosis of infected, compromised airway epithelial cells may represent a novel inflammomodulatory role for this peptide in innate host defense, promoting the clearance of respiratory pathogens

    An Approximate Bayesian Estimator Suggests Strong, Recurrent Selective Sweeps in Drosophila

    Get PDF
    The recurrent fixation of newly arising, beneficial mutations in a species reduces levels of linked neutral variability. Models positing frequent weakly beneficial substitutions or, alternatively, rare, strongly selected substitutions predict similar average effects on linked neutral variability, if the product of the rate and strength of selection is held constant. We propose an approximate Bayesian (ABC) polymorphism-based estimator that can be used to distinguish between these models, and apply it to multi-locus data from Drosophila melanogaster. We investigate the extent to which inference about the strength of selection is sensitive to assumptions about the underlying distributions of the rates of substitution and recombination, the strength of selection, heterogeneity in mutation rate, as well as the population's demographic history. We show that assuming fixed values of selection parameters in estimation leads to overestimates of the strength of selection and underestimates of the rate. We estimate parameters for an African population of D. melanogaster (ŝ∼2E−03, ) and compare these to previous estimates. Finally, we show that surveying larger genomic regions is expected to lend much more discriminatory power to the approach. It will thus be of great interest to apply this method to emerging whole-genome polymorphism data sets in many taxa

    Tales of the unexpected: the selection of British party leaders since 1963

    Get PDF
    Jeremy Corbyn’s election as Leader of the Labour Party in 2015 stunned observers and practitioners of British politics alike. In this article, we first outline a theoretical framework that purports to explain why political parties operating in parliamentary systems choose the leaders they do. We then examine 32 leadership successions involving five major British parties since 1963, and note that many of these were unexpected, in that they were triggered by unforeseen circumstances, such as the sudden death or resignation of the incumbent. Examining each party in turn, we briefly explain why the winners won and identify at least eight cases (a quarter of our sample) where a candidate widely expected to prevail at the outset was ultimately defeated by a ‘dark horse’, ‘second favourite’ or even ‘rank outsider’. Of these, Corbyn’s election in 2015 was the most unexpected and, consistent with the findings of studies of party leadership conventions in other parliamentary systems, namely Canada and Spain, suggests that ideological and policy concerns are sometimes more important than considerations of party unity and electability, especially when a leadership contest is dominated by party activists

    Modeling the Spatial Distribution and Fruiting Pattern of a Key Tree Species in a Neotropical Forest: Methodology and Potential Applications

    Get PDF
    Damien Caillaud is with UT Austin and Max Planck Institute for Evolutionary Anthropology; Margaret C. Crofoot is with the Smithsonian Tropical Research Institute, Max Planck Institute for Ornithology, and Princeton University; Samuel V. Scarpino is with UT Austin; Patrick A. Jansen is with the Smithsonian Tropical Research Institute, Wageningen University, and University of Groningen; Carol X. Garzon-Lopez is with University of Groningen; Annemarie J. S. Winkelhagen is with Wageningen University; Stephanie A. Bohlman is with Princeton University; Peter D. Walsh is with VaccinApe.Background -- The movement patterns of wild animals depend crucially on the spatial and temporal availability of resources in their habitat. To date, most attempts to model this relationship were forced to rely on simplified assumptions about the spatiotemporal distribution of food resources. Here we demonstrate how advances in statistics permit the combination of sparse ground sampling with remote sensing imagery to generate biological relevant, spatially and temporally explicit distributions of food resources. We illustrate our procedure by creating a detailed simulation model of fruit production patterns for Dipteryx oleifera, a keystone tree species, on Barro Colorado Island (BCI), Panama. Methodology and Principal Findings -- Aerial photographs providing GPS positions for large, canopy trees, the complete census of a 50-ha and 25-ha area, diameter at breast height data from haphazardly sampled trees and long-term phenology data from six trees were used to fit 1) a point process model of tree spatial distribution and 2) a generalized linear mixed-effect model of temporal variation of fruit production. The fitted parameters from these models are then used to create a stochastic simulation model which incorporates spatio-temporal variations of D. oleifera fruit availability on BCI. Conclusions and Significance -- We present a framework that can provide a statistical characterization of the habitat that can be included in agent-based models of animal movements. When environmental heterogeneity cannot be exhaustively mapped, this approach can be a powerful alternative. The results of our model on the spatio-temporal variation in D. oleifera fruit availability will be used to understand behavioral and movement patterns of several species on BCI.The National Center For Ecological Analysis is supported by NSF Grant DEB-0553768, the University of California Santa Barbara and the State of California. The Forest Dynamics Plots were funded by NSF Grants to Stephen Hubbell DEB-0640386, DEB-0425651, DEB-0346488, DEB-0129874, DEB-00753102, DEB-9909347, DEB-9615226, DEB-9615226, DEB-9405933, DEB-9221033, DEB-9100058, DEB-8906869, DEB-8605042, DEB-8206992, DEB-7922197, and by the Center for Tropical Forest Science, the Smithsonian Tropical Forest Research Institute, The John D. and Catherine T. MacArthur Foundation, the Mellon Foundation and the Celera Foundation. DC is supported by NSF grant DEB-0749097 to L.A. Meyers. SS is supported by an NSF Graduate Research Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o

    Melanocortin-1 Receptor, Skin Cancer and Phenotypic Characteristics (M-SKIP) Project: Study Design and Methods for Pooling Results of Genetic Epidemiological Studies

    Get PDF
    Background: For complex diseases like cancer, pooled-analysis of individual data represents a powerful tool to investigate the joint contribution of genetic, phenotypic and environmental factors to the development of a disease. Pooled-analysis of epidemiological studies has many advantages over meta-analysis, and preliminary results may be obtained faster and with lower costs than with prospective consortia. Design and methods: Based on our experience with the study design of the Melanocortin-1 receptor (MC1R) gene, SKin cancer and Phenotypic characteristics (M-SKIP) project, we describe the most important steps in planning and conducting a pooled-analysis of genetic epidemiological studies. We then present the statistical analysis plan that we are going to apply, giving particular attention to methods of analysis recently proposed to account for between-study heterogeneity and to explore the joint contribution of genetic, phenotypic and environmental factors in the development of a disease. Within the M-SKIP project, data on 10,959 skin cancer cases and 14,785 controls from 31 international investigators were checked for quality and recoded for standardization. We first proposed to fit the aggregated data with random-effects logistic regression models. However, for the M-SKIP project, a two-stage analysis will be preferred to overcome the problem regarding the availability of different study covariates. The joint contribution of MC1R variants and phenotypic characteristics to skin cancer development will be studied via logic regression modeling. Discussion: Methodological guidelines to correctly design and conduct pooled-analyses are needed to facilitate application of such methods, thus providing a better summary of the actual findings on specific fields

    The P2 Receptor Antagonist PPADS Supports Recovery from Experimental Stroke In Vivo

    Get PDF
    BACKGROUND: After ischemia of the CNS, extracellular adenosine 5'-triphosphate (ATP) can reach high concentrations due to cell damage and subsequent increase of membrane permeability. ATP may cause cellular degeneration and death, mediated by P2X and P2Y receptors. METHODOLOGY/PRINCIPAL FINDINGS: The effects of inhibition of P2 receptors by pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) on electrophysiological, functional and morphological alterations in an ischemia model with permanent middle cerebral artery occlusion (MCAO) were investigated up to day 28. Spontaneously hypertensive rats received PPADS or vehicle intracerebroventricularly 15 minutes prior MCAO for up to 7 days. The functional recovery monitored by qEEG was improved by PPADS indicated by an accelerated recovery of ischemia-induced qEEG changes in the delta and alpha frequency bands along with a faster and sustained recovery of motor impairments. Whereas the functional improvements by PPADS were persistent at day 28, the infarct volume measured by magnetic resonance imaging and the amount of TUNEL-positive cells were significantly reduced by PPADS only until day 7. Further, by immunohistochemistry and confocal laser scanning microscopy, we identified both neurons and astrocytes as TUNEL-positive after MCAO. CONCLUSION: The persistent beneficial effect of PPADS on the functional parameters without differences in the late (day 28) infarct size and apoptosis suggests that the early inhibition of P2 receptors might be favourable for the maintenance or early reconstruction of neuronal connectivity in the periinfarct area after ischemic incidents

    Four Regional Marine Biodiversity Studies: Approaches and Contributions to Ecosystem-Based Management

    Get PDF
    We compare objectives and approaches of four regional studies of marine biodiversity: Gulf of Maine Area Census of Marine Life, Baltic Sea History of Marine Animal Populations, Great Barrier Reef Seabed Biodiversity Project, and Gulf of Mexico Biodiversity Project. Each program was designed as an "ecosystem" scale but was created independently and executed differently. Each lasted 8 to 10 years, including several years to refine program objectives, raise funding, and develop research networks. All resulted in improved baseline data and in new, or revised, data systems. Each contributed to the creation or evolution of interdisciplinary teams, and to regional, national, or international science-management linkages. To date, there have been differing extents of delivery and use of scientific information to and by management, with greatest integration by the program designed around specific management questions. We evaluate each research program's relative emphasis on three principal elements of biodiversity organization: composition, structure, and function. This approach is used to analyze existing ecosystem-wide biodiversity knowledge and to assess what is known and where gaps exist. In all four of these systems and studies, there is a relative paucity of investigation on functional elements of biodiversity, when compared with compositional and structural elements. This is symptomatic of the current state of the science. Substantial investment in understanding one or more biodiversity element(s) will allow issues to be addressed in a timely and more integrative fashion. Evaluating research needs and possible approaches across specific elements of biodiversity organization can facilitate planning of future studies and lead to more effective communication between scientists, managers, and stakeholders. Building a general approach that captures how various studies have focused on different biodiversity elements can also contribute to meta-analyses of worldwide experience in scientific research to support ecosystem-based management

    Magnetic resonance imaging of brain angiogenesis after stroke

    Get PDF
    Stroke is a major cause of mortality and long-term disability worldwide. The initial changes in local perfusion and tissue status underlying loss of brain function are increasingly investigated with noninvasive imaging methods. In addition, there is a growing interest in imaging of processes that contribute to post-stroke recovery. In this review, we discuss the application of magnetic resonance imaging (MRI) to assess the formation of new vessels by angiogenesis, which is hypothesized to participate in brain plasticity and functional recovery after stroke. The excellent soft tissue contrast, high spatial and temporal resolution, and versatility render MRI particularly suitable to monitor the dynamic processes involved in vascular remodeling after stroke. Here we review recent advances in the field of MR imaging that are aimed at assessment of tissue perfusion and microvascular characteristics, including cerebral blood flow and volume, vascular density, size and integrity. The potential of MRI to noninvasively monitor the evolution of post-ischemic angiogenic processes is demonstrated from a variety of in vivo studies in experimental stroke models. Finally, we discuss some pitfalls and limitations that may critically affect the accuracy and interpretation of MRI-based measures of (neo)vascularization after stroke
    corecore